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We study the chiral condensate) for an SU(3) gauge theory withv; massless Dirac fermions in
the fundamental representation wh¥p is increased from to 6. For Ny = 2, our lattice simulations of
() /F3, whereF is the Nambu-Goldstone-boson decay constant, agree véitinétasured QCD value.
For N, = 6, this ratio shows significant enhancement, presaging amlavger enhancement anticipated
asN;y increases further, toward the critical value for transitimm confinement to infrared conformality.

PACS numbers: 11.10.Hi, 11.15.Ha, 11.25.Hf, 12.60.NZ30.0Qc

Introduction Theories with an approximate conformal suppress FCNC's.
symmetry could play a role in describing new physics at The enhancement d+))/F* asN; — N from be-
the TeV scale and beyond. While a non-supersymmetridow has been indicated by Feynman-graph-based studies
vector-like gauge theory exhibits confinement and spontg7, 8]. But it is important also to use non-perturbative meth
neous chiral symmetry breaking with a small numB&r  ods since the couplings involved are strong. This letter de-
of massless fermions, it becomes conformal in the infraredscribes a first step in this program. We focus or5an(3)
governed by a weak infrared fixed pointN; is larger, gauge theory withV; massless Dirac fermions in the fun-
but just below the value for which which asymptotic free-damental representation. Lattice studies have shown that
dom sets in [1]. There is evidence from lattice simula-the N; = 8 theory is chirally broken, with no evidence
tions [2, 3, 4, 5, 6] that this infrared conformality persist for even an approximate infrared fixed point [2, 4]; while
down through a “conformal window” olN;-values where  there is significant lattice evidence for conformal behavio
the fixed point can become strong, and that a transition tat N, = 12, indicating thag < N§ <121[2,3,4,5,6].
the confining and chirally broken phase takes place at some We present results here for the valuds = 2 and
value Ny, N; = 6, drawing on newly available computational re-

Even forN; < N there can remain an approximate in- sources, including 150 million core-hours on the Blue-
frared fixed point providing that < Nf — Ny < N7.  Gene/L supercomputer at Lawrence Livermore National
The scalel” of chiral symmetry breaking is then small rel- Laboratory (LLNL). Starting withN; = 2 allows us to
ative to the intrinsic scales of the theory, and the fixed fpoincheck the reliability of our methods by comparison with the
approximately governs the theory from the breaking scal@henomenological value df)v)/F* for QCD. Proceed-
out to some higher scale. ing carefully towardN§ is prudent since the emergence

This “walking” phenomenon can play an important phe-of widely separated scales associated with the approximate
nomenological role in a technicolor theory of electroweakinfrared fixed point of walking is problematic for lattice
symmetry breaking. (If there ar¥;/2 electroweak dou- methods. Still, inspection of our lattice resultsiéf = 6
blets, thenF = Fpy /\/N;/2 ~ 250 GeV/,/N;/2.) indicates an enhancement(efy)/F* of atleas60%, and
Flavor-changing neutral currents (FCNC’s), which areeven a very conservative lower bound based on chiral per-
present when the technicolor theory is extended to providtirbation theory ¢PT) indicates significant enhancement.
for the generation of quark masses, can be too large un- Methods For a range of small fermion masses we
less the associated scalg;;¢ is high enough. But then compute the Nambu-Goldstone-boson (NGB) mass,
the first- and second-generation quark masses are typicaltile NGB decay constaift,,, and the chiral condensate per
much too small. They are proportional to the quantityfermion (1)),,. To set a physical scale, we also com-
() /A%, wherey is a technifermion field an¢i)«) is ~ pute the mas3d/, ,, of the analogue of the meson and
the bilinear fermion condensate defined (cut offhat,.  the Sommer scale, ,, at whichr2dV (r)/dr = 1.65,
Walking can lift the quark masses by enhancing the conwhereV (r) is the static potential [9]. Since our goal is
densatg(y)) significantly above its value{(47F?)) in  to search for the enhancement(gfy)/F* asN; — N¢,
a QCD-like theory, while keepind%, large enough to from the emergence of walking between the physical length
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scale and the ultraviolet cutoff, taken here to be the |z 0.4
tice spacing, itis important to keep the lattice spacingfixe I
(and small) in physical units. We first choose a value fc I
B =6/g3 atN; = 6, giving a physical scale of several lat- 0.3
tice units. ForN; = 2, we then tune? to match the same &
physical scale in lattice units. The resultant enhanceme =

is lattice-sensitive, but we expect it to match qualitdiive
the enhancement with a physical, continuum cutoff.

If the fermion masses are small enough, then the extre
olationm — 0 can be carried out by fitting the results for
M2, F,, and (y1)),, to xPT. The next-to-leading-order
(NLO) expressions are [10]
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F Ny FIG. 1: Linear chiral extrapolations d¥/, ,, and the Sommer
(1) scalery}, in lattice units, based on the (solid) pointsmap =

N 0.01 — 0.02. Both show agreement within error betwem;a': 2
E,=F {1 + zm {QF - 7" ]og(zm):| } . (2) andN; = 6in the chiral limit.

N}Z -1 1 B = 2.70 then leads to nearly the same physical scale in
f og(zam)| ¢, lattice units. Simulations are performed for fermion masse
(3) my = 0.005 to 0.03. At finite lattice spacing, even with
wherez = 2(yn)) /(4m)2 F4. my = 0, the chiral symmetry is not exact, with the vio-
There is a contribution ta(¢1)),, linear in m and lation captured in a residual mass.., < my. The total
quadratically sensitive to the UV cutoff, present even with fermion massn is thenm = my + my.;.
out spontaneous chiral symmetry breaking. This “contact Although global topological chargé), is an irrelevant
term”, incorporated here (with a slight abuse of notation)juantity with massless fermions and infinite volume, in a
into o, is independent ;. It dominatesy., andinfact ~ finite volume itbecomes relevant [13]. On a discretized lat-
dominates(i),, for the entire range ofn values in our tice, ) is not consgrved, wlth the system evolvmg_between
simulations. The chiral-log terms i, and ()., grow sectors, an evolufuqn crucial forthg correct_sampllng_ ef th
essentially linearly withV;, while the chiral-log term in path mteg_ral at finite volume. .W'th very light fermions,
M2 falls. Each of the (unknown) coefficients,;, o and the evolution ofQ) slows dramatically using current Monte

: : .. Carlo methods [14]. We find th&? evolves sufficiently for
G o e analyte tert has a piece, not shown explit,,, "> 1 forboth N, — 2and. Atm, — 0.005 tdoes

For small enougm, the benchmark mas, ,, canalso Nt leading to systematic shifts W), andF,,, which
be extrapolatedh — 0 using a fit derived fromPT [11].  We will explore in a future paper. Here, we present results

Here the NLO term is linear im (there is nom log(m) ~ for 7y = 0.005, but do not include them in our analy-
term). Similarly, the NLO term in the chiral expansion of SiS- This also ensures that for eaeh M,, L > 4, keeping
To.m IS linear inm. the NGB Compton wavelength well inside the lattice. For

Simulation Details We use domain wall fermions with Vs = 0, there are also results fan; = 0.025,0.03, but
the lwasaki improved gauge action, as used by the RBC€Y are not used in any chiral extrapolations. _
UKQCD collaboration [12]. Lattice fermion discretiza- _ Results Values for M, and 1/r,,, are shown in
tion typically breaks chiral symmetry, but in the domain Fig. 1. The small change in these quantities in the range
wall formulation the breaking is exponentially suppressed” = 0.01 —0.02, and the absence of, log(m) terms
(with flavor symmetry preserved), making it ideal for the IN the smallm expansion suggests that the leading, linear
study of chiral dynamics. Gauge configurations are genef€rms should dominate here even féf = 6. Thus we ex-
ated using the hybrid Monte Carlo method as implemente§f@polatem — 0 using linear fits. The extrapolated values
in the USQCD application libraries, in particulaps via ~ Of M, and1/rq, for N; = 2 are the same within errors
a multi-level symplectic integrator, and using Hasenbusci®S theNy = 6 values, indicating that the physical scale is
preconditioning and chronological inversion. Autocaarel Well matched in lattice units. Numerical values are given
tion is reduced by blocking over sets of 50 trajectories. N Table I. For QCDy, = 0.378(9) GeV " [15], giving

The lattice volume is set 82° x 64, with the length of  1/M,ro = 0.488(12), in reasonable agreement with our
the fifth dimensionL, = 16 and the domain-wall height Vs = 2 valuel/M,r, = 0.561(44).
mo = 1.8. All quantities are given in lattice units. For ~ Turning now toM?, F,,, and(y¢),,, and noting that
N; = 6 we choose3 = 2.10. For N; = 2 the choice M?2 /2mF,, extrapolates tqi)/F*? in the chiral limit,

(B0 = @) {1+ 2m fac -



Nel| Ufro | M, |@)/F? F (W) ol i
2 ||0.111(4)0.198(14) 0.99(17)|0.0209(41)4.32(94) x 10~* i B

6 ||0.100(6)0.207(15) — — — i

Ny z an ap ac x2/d.o.f.

2 || 28(16) | 0.31(62)| 0.64(47)| 83(29) 6.50

TABLE I: Chirally extrapolated quantities and fit paramster
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o N=6/N=2 | oot ooz 003
e 1 FIG. 3: The slope of the pseudoscalar mass squafd2m in
X g B lattice units, as a function of fermion mass. The fitfof = 2 is
} | from a joint fit to M2, F,, and (1)), using the (solid) points at
E | my = 0.01 — 0.02, constrained to match NLQPT.
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FIG. 2: Ry = [M3,/2mFm]ss/[ M, /2mFm]as, VErSUsm =
(m(2f)+m(6f))/2, showing enhancement Gpe) /3 atN; =
6 relative toN; = 2.

. o001 |*N72 .
we can get an estimate of the enhancement of this rati I |m N=6
by comparingM? /2mF,, at N; = 6 and N; = 2 e
at finite m,. We do this by plotting the ratio of ratios % 0.01 0.02 0.03

R,, = [M2/2mF,)es/[M2 /2mF,,],; in Fig. 2. (We m

use the ratloan/QmFm instead of directly evaluating FIG. 4: The Goldstone-boson decay consténtin lattice units,
(Y1) / F;, because the large contact term in Eq. 3 makess a function of fermion mass. The fit for, = 2 is a joint
the chiral extrapolation less reliable.) The evident trend fit to 172, F,, and (¥)m, using the (solid) points an; =
that 1?,,, increases as; decreases. Even disregarding theo.o1 — 0.02, constrained to match NLQPT.

point atm; = 0.005, this suggests that the extrapolated

value will be well above unity. A value abowue5, corre-

sponding to &0% enhancement ofyyy)/F° at N; = 6,  dicating that NLOXPT (Eqgs. 1 and 2) should provide a
will emerge unless there is a downturniy,. This would  reliable fit. (Our results foKyv)),,, not displayed here,
require either a conspiracy ofPT parameters given the show the expected dominance of the linear contact term.)
natural upturn of the combined chiral-log terms in Eqgs. 1Therefore we carry out thd/; = 2 extrapolationn — 0
and 2, or an unexplained and significant downturn beforeising the combined NLO chiral expansions of Egs. (1), (2)
xPT turns the curve up again as — 0. and (3). The five-parameter fit is enumerated in Table I,

We nevertheless exercise caution by examining the sepand the fit curves fod/7, /2m andF,,, with error bars, are -
rate simulation results fdMi/Qm andF,,, shown in Figs. shown in Figs. 3 and 4. Taking covariance into account in
3 and 4. While there is good evidence that féf = 2.a  €rror propagation, we find
reliable extrapolation ofn — 0 can be performed using —

NLO xPT, this is not the case for fa¥; = 6. There, the Ny =2: {Yy) = 47.1(17.6). (4)

simulation results for;,, and the linear growth withiV £

of the chiral log terms in Egs. 2 and 3 indicate thatthe The values ofv,, anda indicate the reliability of NLO

values are not yet small enough. xPT, although the? (Table 1) suggests that it may not yet
We first confirm that forNV; = 2, xPT can be used for be an excellent fit to the data. _

the extrapolation. From Figs. 3 and 4, we see 3t/2m We next compare ouN; = 2 results for () /F?

and F;,, change little in the rangex; = 0.01 — 0.02, in-  and M,/F to the QCD quantitiesgg)/f> andm,/ f,
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a reasonable comparison since the light-quark masses cutoff fixed in physical units, is enhanced whaf} is in-

are so small. Withf, = 92.4(0.3) MeV andm, =  creased fron2 to 6 — by at leas60% from inspection of the
775 MeV, we havem,/f, = 8.39(0.04), compared simulation results. Even very conservative lower bounds
to our valueM,/F = 9.4(2.5). The condensatéjg) from xPT-based analyses indicate a substantial increase.
is renormalization-scheme dependent, asnis In the  An enhancement of less th&0% would require a signif-
MS scheme a2 GeV (~ 2.6m,), Ref. [16] finds icant and hard-to-explain downturn Rm_(Fig. 2). .We
(@q)s cev/ 3 = 24.1(4.3). In our case i) is defined ~ €XPect the enhancement seen here, arising dominantly at
by lattice regularization wittlu=! ~ 5M, (equivalent to t_he lattice scale, to be qualitatively the same as with a con-
3.85 GeV). The increase iffq) going to this higher scale tinuum cutoff from the onset of new physics.

can be estimated perturbatively from the anomalous dimen- It will be interesting to compare these results with a per-
sion of the mass operator [17]. We fii@ly)5 s5 cev/f2 =  turbativeMS computation of the enhancement based on the
29.5(5.3). There is also a renormalization factgr’®,  anomalous dimension @f/+). And it will be important to
which converts theM/ S condensate to the lattice-cutoff obtain results for smallem and perhaps study the chiral

scheme. Using Ref. [18], we find™~(3.85 GeV) = extrapolations at NNLO. We must also explore larger val-

1.227(+37)(—11), and therefore(qq)s.ss eviat/f> =  UE€S of Ny (— N¥) and other gauge groups, and study the

36.2(6.5), in agreement with Eq. (4). consequences of walking for quark and lepton mass gener-
Finally, we discuss ouN; = 6 results. While the ation and electroweak precision measurements.
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